Forex: просто о сложном Анализ рынка Форекс Торговля на Forex Технический анализ Форекс Forex-инвестиции Торговые стратегии Форекс Лучшие брокеры Форекс
В данной книге рассмотрены методы построения и обучения нейронных сетей. Описаны наиболее распространенные виды сетей и их применение к таким расчетам на финансовом рынке, как расчет цен опционов, оценка индексов акций и управление международным портфелем.
Лучший брокер бинарных опционов
Глава 1. Нейронно-сетевые методы
Forex

В этой главе рассматриваются основные структуры и назначение нейронно-сетевых моделей. Описаны принципы разработки, обучения и оценки эффективности. Показано, каким образом множество задач, сильно различающихся параметрами сложности и устойчивости, может быть охвачено единой сетевой концепцией

ВВЕДЕНИЕ В МЕТОДЫ НЕЙРОННЫХ СЕТЕЙ

Нейронные сети представляют собой новую и весьма перспективную вычислительную технологию, дающую новые подходы к исследованию динамических задач в финансовой области. Первоначально нейронные сети открыли новые возможности в области распознавания образов, затем к этому прибавились статистические и основанные на методах искусственного интеллекта средства поддержки принятия решений и решения задач в сфере финансов.

Способность к моделированию нелинейных процессов, работе с зашумленными данными и адаптивность дают возможность применять нейронные сети для решения широкого класса финансовых задач. В последние несколько лет на основе нейронных сетей было разработано много программных систем для применения в таких вопросах, как операции на товарном рынке, оценка вероятности банкротства банка, оценка кредитоспособности, контроль за инвестициями, размещение займов.


По нашей оценке, на 18.07.2018 г. лучшими брокерами являются:

• для самостоятельной торговлиNPBFX;

• для инвестицийАльпари;

• для бинарных опционовBinomo;

• для торговли акциямиRoboForex Stocks (на счете R Trader доступно более 8700 торговых инструментов).


Приложения нейронных сетей охватывают самые разные области интересов: распознавание образов, обработка зашумленных данных, дополнение образов, ассоциативный поиск, классификация, составление расписаний, оптимизация, прогноз, диагностика, обработка сигналов, абстрагирование, управление процессами, сегментация данных, сжатие информации, сложные отображения, моделирование сложных процессов, машинное зрение, распознавание речи.

Смысл использования нейронных сетей в финансовой области заключается вовсе не в том, чтобы вытеснить традиционные методы или изобретать велосипед. Это просто еще одно возможное средство для решения задач, и цель этой книги — показать на целом ряде примеров, как можно применять нейронный подход и сравнивать его эффективность с эффективностью других методов. На основании этих примеров можно будет сделать общий вывод о том, что нейронные сети довольно хорошо умеют отражать свойства разрывности, наблюдаемые в нашем мире. Неудивительно, что на исследования в этой области выделяются значительные средства: на 5-летнюю программу в США было выделено $300,000,000, в Японии на 10-летнюю программу — $400,000.000. финансирование в странах Европы составляет порядка $100,000,000.

В этой главе, не углубляясь в детали теории, мы познакомим читателя-практика с основами сетевых вычислений. Более подробное изложение этих вопросов можно найти в многочисленной технической литературе. Наша цель сейчас - дать описание, что представляет собой нейронная сеть: ее составляющие, структура, конструктивные элементы, как понять логику ее работы, как описать ее возможное поведение. В следующей главе мы рассмотрим эти вопросы более конкретно для двух основных областей применения нейронных сетей — классификации и прогноза.

Параллели с биологией

Идея разработки систем обработки интеллектуальной информации по образу устройства нервной системы возникла давно. В 1943 г. МакКаллох и Питс создали упрощенную модель нервной клетки — нейрон. Мозг человека содержит до 10" нейронов различных видов, при этом все они сложным образом связаны между собой и собраны в популяции — нейронные сети.

С биологической точки зрения, клетка состоит из ядра, отростков (дендритов), через которые информация поступает в клетку, и аксона, передающего выходной сигнал в другие клетки посредством тысяч разветвлений— синапсов. Простейший нейрон может иметь до 10*4 дендритов, принимающих электрохимические сигналы от других клеток. Определенные сложные комбинации этих входных сигналов, с учетом уровня чувствительности, вызывают возбуждение нейрона. После этого клетка через аксон передает сигнал другим клеткам, также имеющим свою систему связей. При поступлении сигнала изменяется вероятность возбуждения следующего нейрона. Если она увеличивается, то такая синаптическая связь называется возбуждающей, если уменьшается — тормозящей.

Внутри биологической клетки сигнал распространяется гораздо медленнее, чем в электронных схемах. Однако, вся сеть целиком оказывается высокоэффективной в решении таких сложных задач, как, например, распознавание образов (зрение, речь). Можно предположить, что причина таких потрясающих способностей мозга кроется в высокой организации связей и параллелизме в функционировании сети.

Характер разработок в области нейронных сетей принципиально отличается от экспертных систем: последние построены на утверждениях типа "если..., то...", которые нарабатываются в результате длительного процесса обучения системы, а прогресс достигается, главным образом, за счет более удачного использования формально-логических структур.

Содержание Далее

В основе нейронных сетей лежит преимущественно поведенческий подход к решаемой задаче: сеть «учится на примерах» и подстраивает свои параметры при помощи так называемых алгоритмов обучения через механизм обратной связи. Alpari
Forex: просто о сложном
Яндекс.Метрика
Литература по биржевой торговле:

Бестенс Д. и др. Нейронные сети и финансовые рынки

Ван Тарп и др. Биржевые стратегии игры без риска

Грант К. Управление рисками в трейдинге

Моррис Г. Японские свечи

Пайпер Д. Дорога к трейдингу

Резго Г.Я., Кетова И.А. Биржевое дело

Рэдхэд К., Хьюс С. Управление финансовыми рисками

Сафонов В. Трейдинг. Дополнительное измерение принятия решений

Торговая система Woodies CCI

Торговая стратегия «Трейдинг без головной боли»

Тощаков И. Forex: игра на деньги. Стратегии победы

Хатсон Дж. Метод Вайкоффа

Черепков А. Теория длинных волн Н.Д. Кондратьева

Бинарные опционы Альпари