Слава Україні!
Адмін сайту, який є громадянином України та безвиїзно перебуває в Україні на протязі всього часу повномасштабної російської агресії, зичить щастя та мирного неба всім українським хлопцям та дівчатам! Також він рекомендує українським трейдерам кращих біржових та бінарних брокерів, що мають приємні торгові умови та не співпрацюють з російською федерацією. А саме:
Exness – для доступу до валютного ринку;
RoboForex – для роботи з CFD-контрактами на акції;
Deriv – для опціонної торгівлі.
Ну, і звичайно ж, заборонену в росії компанію Альпарі, через яку Ви маєте можливість долучитися як до валютного ринку, так і до торгівлі акціями та бінарними опціонами (Fix-Contracts). Крім того, Альпарі ще цікава своїми інвестиційними можливостями. Дивіться, наприклад:
рейтинг ПАММ-рахунків;
рейтинг ПАММ-портфелів.
Все буде Україна!
|
ВОЗМОЖНОСТИ НЕЙРОННЫХ СЕТЕЙ В ЗАДАЧЕ ПРОГНОЗИРОВАНИЯ БАНКРОТСТВА КОРПОРАЦИЙ
Во многих реальных задачах основной трудностью оказывается то. что нейронная сеть не может достаточно ясно показать причинно-следственные связи и выдает какое-то решение по принципу черного ящика. При этом в финансовом анализе для оценки состояния дел предприятий уже давно используются специально подобранные комбинации различных показателей, а качество модели оценивается с помощью критериев согласия без учета структуры модели. По существу, все сводится к выбору показателя (или комбинации показателей), соответствующего решающему правилу, которое позволяет включить (или не включать) данное предприятие в ту или иную группу (жизнеспособные, быстро растущие, высокоприбыльные).
В принципе, данные по компаниям могут служить основой для нейронных сетей — очевидно, что здесь задействованы процессы, близкие к случайному блужданию. Это не покажется удивительным, если посмотреть, как компании почти ежедневно взаимодействуют с рынком, конкурентами и постоянно меняющимися условиями работы, а также если учесть, что компания, способная сделать удачный прогноз на основе опережающей информации, имеет на финансовом рынке высокую ликвидность своих акций и большие возможности для усиления своих позиций.
При имеющемся уровне сложности и одновременности происходящих процессов модели, основанные на причинных связях, имеют ограниченные возможности для применения: вновь происходящие события постоянно меняют спецификации всех переменных (и включенных, и не включенных в модель), а значении априорных вероятностей и размеров выплат по различным стратегиям весьма неопределенны и резко меняются вместе с изменениями показателей экономического роста, процентных ставок, обменных курсов и прибыльностью сделок, не связанных с кредитованием (например, при изменении операционных и комиссионных сборов).
Традиционный подход к прогнозированию банкротств основан на множественном дискриминантом анализе. Методы такою тина используются в широко распространенных системах определения рейтинга кредитоспособности, где ищется гиперплоскость, наилучшим образом разделяющая "хороших" и "плохих" кандидатов. Хотя к настоящему времени разработано множество дискриминантных моделей, используется (в частности, в управлении кредитами) лишь небольшое число из них. В ряде случаев банки приходят к выводу, что методы MDA не дают ожидаемого улучшения точности по сравнению с традиционными методами.
Оценить качество моделей этого типа непросто, поскольку даже если погрешность вычисляется на материале новых наблюдений, данные но обанкротившимся компаниям (так же, как и по их выжившим партнерам) приходятся большей частью на периоды интенсивных банкротств, и количество наблюдений, соответствующих выжившим компаниям, как правило, очень мало и дает лишь поверхностное представление о пересечении множеств банкротов и небанкротов. Поэтому надежность моделей MDA в реальном времени остается под вопросом. В принципе, нейронные модели справляются с некоторыми из этих трудностей, потому что для обучения могут быть взяты данные, охватывающие периоды с различной ситуацией в экономике и степенью интенсивности банкротств, и обанкротившиеся и выжившие компании могут быть представлены в обучающем множестве в пропорции, соответствующей реальной вероятности того и другого.
К тому же сеть может учитывать большое количество разнотипных переменных и обучаться на них на всех, тогда как данный для множественного дискриминантного анализа редко включают в себя экономические и финансовые индикаторы.
|