Forex: просто о сложном Анализ рынка Форекс Торговля на Forex Технический анализ Форекс Forex-инвестиции Торговые стратегии Форекс Лучшие брокеры Форекс
В данной книге рассмотрены методы построения и обучения нейронных сетей. Описаны наиболее распространенные виды сетей и их применение к таким расчетам на финансовом рынке, как расчет цен опционов, оценка индексов акций и управление международным портфелем.
Лучший брокер бинарных опционов
СРАВНЕНИЕ ИНДИВИДУАЛЬНОГО И СИСТЕМАТИЧЕСКОГО ВКЛАДА ПЕРЕМЕННЫХ
Forex

Достаточно широко распространено мнение, что нейронные сети не лают ничего для понимания пользователем сути проблемы и. в отличие от регрессионного анализа, который выдает ряд статистик по каждой переменной, остаются "черным ящиком". В этой связи в данном разделе мы приводим результаты исследования факторов, влияющих на решение, которое принимает сеть. В идеале следовало бы выяснить значимость либо незначимость отдельного вклада каждой из переменных и предоставить лицу, принимающему решение, возможность самому разбивать переменные по категориям в соответствии с их поведением во времени при различных обстоятельствах.

Представим себе, например, переменную, которая влияет на выход (доход по индексу курсов акций) только на одной из фаз делового цикла (скажем, при понижении конъюнктуры рынка, по не при подъеме, или же наоборот). Общий (усредненный) ее вклад может быть незначительным, и OLS-регрессия, скорее всего, квалифицирует эту переменную как несущественную.


По нашей оценке, на 13.11.2018 г. лучшими брокерами являются:

• для торговли валютамиNPBFX;

• для торговли бинарными опционамиBinomo;

• для инвестирования в ПАММы и др. инструменты – Альпари;

• для торговли акциямиRoboForex Stocks (более 8700 инструментов – на счете R Trader).


Теперь представим себе, что некоторая переменная активна во всех фазах цикла, но в разные фазы действует в разных направлениях (например, переменная, усиливающая тенденцию рынка и на его подъеме, и на спаде). Такое типично нелинейное поведение может остаться совершенно незамеченным OLS-регрессией, но MBPN-сеть, скорее всего, его уловит. Далее, предположим, что переменная активна во всех фазах делового цикла и действует в том же направлений, что и движется рынок (например, увеличивает доходы во время роста активности на рынке и уменьшает их при понижении рынка). Вероятно, и сеть, и регрессия скажут, что эта переменная значима. Итак, классификация переменных в соответствии с их вкладом (поведением) во времени может пролить свет на механизмы происхождения дохода от акции.

Коль скоро OLS-рсгрессия не всегда способна уловить все имеющиеся функциональные связи между независимыми и зависимыми переменными, нужно искать другие пути к пониманию поведения переменных. Мы расскажем здесь о двух интуитивных эвристических подходах. В первом из них важность переменной оценивается путем сравнения погрешности прогноза, полученного при исходной входной матрице, с погрешностью, которая получится, если значения всех переменных заменить на их средние значения. Во втором эвристическом методе вклад отдельной переменной оценивается но степени надежности выхода сети (decisiveness). Метод работает «наперед» (ex ante), не обращаясь к реальным значениям целевой переменной или погрешности.

Содержание Далее

Его недостаток состоит в том, что переменные могут быть классифицированы в соответствии с тем, поддерживают или противоречат ли они выдаваемому решению, а это решение на самом деле может быть неправильным. Alpari
Forex: просто о сложном
Яндекс.Метрика
Литература по биржевой торговле:

Бестенс Д. и др. Нейронные сети и финансовые рынки

Ван Тарп и др. Биржевые стратегии игры без риска

Грант К. Управление рисками в трейдинге

Моррис Г. Японские свечи

Пайпер Д. Дорога к трейдингу

Резго Г.Я., Кетова И.А. Биржевое дело

Рэдхэд К., Хьюс С. Управление финансовыми рисками

Сафонов В. Трейдинг. Дополнительное измерение принятия решений

Торговая система Woodies CCI

Торговая стратегия «Трейдинг без головной боли»

Тощаков И. Forex: игра на деньги. Стратегии победы

Хатсон Дж. Метод Вайкоффа

Черепков А. Теория длинных волн Н.Д. Кондратьева

Бинарные опционы Альпари