Forex: просто о сложном Анализ рынка Форекс Торговля на Forex Технический анализ Форекс Forex-инвестиции Торговые стратегии Форекс Лучшие брокеры Форекс
В данной книге рассмотрены методы построения и обучения нейронных сетей. Описаны наиболее распространенные виды сетей и их применение к таким расчетам на финансовом рынке, как расчет цен опционов, оценка индексов акций и управление международным портфелем.
Лучший брокер бинарных опционов
РЕЗУЛЬТАТЫ РАБОТЫ СЕТИ
Forex

С помощью 33-14-1 MBPN-сетни прямыми связями между входами и выходом и логистическими функциями активации были получены две совокупности прогнозов.

Первая совокупность прогнозов получена сетью (которую мы назвали ALLNET), обученной на исходных обучающих и подтверждающих данных в течение 18,0100 эпох. Были изучены влияния разных значений коэффициента обучения, импульса и числа скрытых элементов на среднеквадратичную ошибку на подтверждающем множестве. Наименьшие значения достигались при коэффициенте обучения 0.1, импульсе 0.9 и 14 скрытых элементах.


По нашей оценке, на 13.11.2018 г. лучшими брокерами являются:

• для торговли валютамиNPBFX;

• для торговли бинарными опционамиBinomo;

• для инвестирования в ПАММы и др. инструменты – Альпари;

• для торговли акциямиRoboForex Stocks (более 8700 инструментов – на счете R Trader).


Второе множество прогнозов было получено на выходе сети ALLLNET после ее повторною обучения с помощью движущегося окна (этот вариант получил название WINNET). Ожидалось, что второй метод, по сравнению с первым и с регрессией, даст лучшие результаты при работе с новыми данными по каждому из следующих критериев:

• Средняя квадратичная ошибка (MSE) на тестовом множестве (MSETE).

• Коэффициент корреляции Пирсона р между целевым значением и выходом (COCO). Этот коэффициент измеряет, насколько хорошо выход совпадает с целевыми значениями в критических точках.

• Чистый доход, полученный на тестовом множестве (NETRET) при применении простейшей однопериодной стратегии торговли (без учета транзакционных издержек). Основываясь на прогнозе дохода, который дает сеть на следующий временной интервал, инвестор занимает длинную или короткую позицию по акциям Филипс и через 15 минут закрывает ее. Затем очередной прогноз сети опять укажет ему, занять ли длинную или короткую позицию, которая будет закрыта через 30 минут и т.д. Итоговый чистый результат может служить мерой точности прогноза, учитывающей направление и абсолютную величину.

ALLNET дает лучшие, по сравнению с регрессией, результаты в смысле MSE и оценки чистого дохода. Однако это не говорит о ее качественном превосходстве в прогнозировании перед линейной моделью. Дальше, чем на 3 дня торгов, и регрессия, и ALLNET протезировали значения меньше 0.5, т.е. отрицательные доходы, так что наш инвестор должен был бы все время держать короткую позицию.

Предполагая, что адаптивно обученная сеть может дать лучшие результаты, мы применили метод обучения при помощи движущегося окна. Для удобства сеть ALLNET повторно обучалась 100 раз, что дало в результате 404 прогноза (вместо 435). На выходе эта сеть (W1NNET) уже не давала понижающею тренда, и это подтвердило наши представления о том, что метод адаптивною обучения имеет преимущество перед статическим обучением, использованным в ALLNET.

Как мы и ожидали, WINNET показала лучшие результаты по всем трем критериям. При этом нужно учесть, что значения пересчитаны так, чтобы учесть меньший объем тестовых данных.

Если говорить о всем тестовом множестве, то обе сети дают лучшие результаты, чем регрессионный анализ. Это неудивительно, поскольку сети способны улавливать нелинейности, содержащиеся в данных. Далее, адаптивная сеть (WINNET) лучше оценивает будущие доходы, чем простая (ALLNET), потому что она может прогнозировать как положительные, так и отрицательные доходы. ALLNET и регрессия дают разные результаты из-за разного числа степеней свободы, и это привносит некоторые нюансы в расстановку победите лей на пьедестале почета.

Содержание Далее

Так, регрессия дает несколько лучшие, по сравнению с обеими сетями, результаты для первых трех торговых дней в смысле корреляции и MSE, но не по полученному чистому доходу. Нужно помнить при этом, что качество прогноза по методу регрессии падает после первых трех дней. Alpari
Forex: просто о сложном
Яндекс.Метрика
Литература по биржевой торговле:

Бестенс Д. и др. Нейронные сети и финансовые рынки

Ван Тарп и др. Биржевые стратегии игры без риска

Грант К. Управление рисками в трейдинге

Моррис Г. Японские свечи

Пайпер Д. Дорога к трейдингу

Резго Г.Я., Кетова И.А. Биржевое дело

Рэдхэд К., Хьюс С. Управление финансовыми рисками

Сафонов В. Трейдинг. Дополнительное измерение принятия решений

Торговая система Woodies CCI

Торговая стратегия «Трейдинг без головной боли»

Тощаков И. Forex: игра на деньги. Стратегии победы

Хатсон Дж. Метод Вайкоффа

Черепков А. Теория длинных волн Н.Д. Кондратьева

Бинарные опционы Альпари